Ground state properties of ferromagnetic metal / conjugated polymer interfaces

نویسندگان

  • S. J. Xie
  • K. H. Ahn
  • D. L. Smith
  • A. R. Bishop
  • A. Saxena
چکیده

We theoretically investigate the ground state properties of ferromagnetic metal/conjugated polymer interfaces. The work is partially motivated by recent experiments in which injection of spin polarized electrons from ferro-magnetic contacts into thin films of conjugated polymers was reported. We use a one-dimensional nondegenerate Su-Schrieffer-Heeger (SSH) Hamiltonian to describe the conjugated polymer and one-dimensional tight-binding models to describe the ferromagnetic metal. We consider both a model for a conventional ferromagnetic metal, in which there are no explicit structural degrees of freedom, and a model for a half-metallic ferromagnetic colossal magnetore-sistance (CMR) oxide which has explicit structural degrees of freedom. The Fermi energy of the magnetic metallic contact is adjusted to control the degree of electron transfer into the polymer. We investigate electron charge and spin transfer from the ferromagnetic metal to the organic polymer, and structural relaxation near the interface. Bipolarons are the lowest energy charge state in the bulk polymer for the nondegenerate SSH model Hamiltonian. As a result electrons (or holes) transferred into the bulk of the polymer form spinless bipolarons. However, there can be spin density in the polymer localized near 1 the interface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ground-state properties of ferromagnetic metalÕconjugated polymer interfaces

We theoretically investigate the ground-state properties of ferromagnetic metal/conjugated polymer interfaces. The work was partially motivated by recent experiments in which injection of spin-polarized electrons from ferromagnetic contacts into thin films of conjugated polymers was reported. We use a one-dimensional nondegenerate Su-Schrieffer-Heeger Hamiltonian to describe the conjugated poly...

متن کامل

Insights into electrochemiluminescent enhancement through electrode surface modification.

The electrochemiluminescent (ECL) properties of a luminescent metal centre, [Ru(bpy)(3)](2+), can be significantly modulated through its electronic interaction with neighbouring centres and the polymer backbone used to confine it on an electrode surface. From the perspective of ECL based sensing devices, an increase in the ECL efficiency of a metallopolymer film can result in enhanced sensor se...

متن کامل

Understanding and controlling organic-inorganic interfaces in mesostructured hybrid photovoltaic materials.

The chemical compositions and structures of organic-inorganic interfaces in mesostructurally ordered conjugated polymer-titania nanocomposites are shown to have a predominant influence on their photovoltaic properties. Such interfaces can be controlled by using surfactant structure-directing agents (SDAs) with different architectures and molecular weights to promote contact between the highly h...

متن کامل

Shaped ceramics with tunable magnetic properties from metal-containing polymers

A shaped, magnetic ceramic was obtained from a metal-containing polymer network, which was synthesized by thermal polymerization of a metal-containing organosilicon monomer. Pyrolysis of a cylinder, shape, or film of the metal-containing polymer precursor produced a low-density magnetic ceramic replica in high yield. The magnetic properties of the shaped ceramic could be tuned between a superpa...

متن کامل

Interfaces and droplets in quantum lattice models

This paper is a short review of recent results on interface states in the Falicov-Kimball model and the ferromagnetic XXZ Heisenberg model. More specifically, we discuss the following topics: 1) The existence of interfaces in quantum lattice models that can be considered as perturbations of classical models. 2) The rigidity of the 111 interface in the three-dimensional FalicovKimball model at s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008